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Viscous, incompressible, axially symmetric flow about an impulsively started 
rotating sphere is studied in terms of non-steady, partially linearized Navier- 
Stokes equations. The non-linear centripetal acceleration is included in full, but 
the other non-linear terms are neglected because of the restriction in interest to 
the case of large (but subcritical) Reynolds or Taylor numbers, u202/v. Approxi- 
mate closed-form solutions for u(r, 8, t) ,  V(T ,  8, t) ,  w(r, 8, t )  are found which 
satisfy all relevant boundary and initial conditions. The linearization approxi- 
mation is checked for consistency and a restriction on 0t is found. The velocity 
profiles, in the range of validity, are shown to be approximately similar in time, 
so their shapes may be qualitatively correct for larger values of Qt.  Some com- 
parison with existing steady-state theories is given and the boundary-layer 
displacement thickness and viscous torque on the sphere are calculated. 

1. Introduction 
The viscous, incompressible flow induced by a sphere rotating in an infinite 

undisturbed fluid environment is of intrinsic fluid mechanical and engineering 
interest and also has some features in common with problems in meteorology and 
astrophysics. There is probably greater meteorological interest in the non-axially 
symmetric case, but here we consider only flows which are independent of 
azimuth or longitude. The present interest arose in connexion with a study of the 
undesirable rotations of high altitude balloons which currently find use as 
platforms for astronomical observations. 

There is ample justification for investigating the impulsively started initial- 
value problem rather than the more pertinent steady-state flow. First, the two 
problems are expected to be somewhat related since the instantaneous velocity 
profiles should be qualitatively the same shape as the ultimate steady-state ones; 
in fact, an interesting result of the present non-steady analysis is that within 
the range of validity of the present solutions, the velocity profiles are nearly 
similar in time. One can then raise the interesting question as to whether or not 
this similarity extends indefinitely in time, in which case, the analysis used here 
would be useful in predicting the steady-state solution, apart from scale and 
amplitude factors. Still greater motivation is the fact that thenon-steady problem 
admits greater mathematical simplification (at least for sufficiently small time) 
than the essentially non-linear steady-state problem. As a result, the disadvan- 
tages inherent in the boundary-layer approximation for this problem, discussed 
below, can be largely avoided. 
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In  1845, Stokes gave an accurate physical description of the steady-state flow 
pattern, pointing out that it is fully three-dimensional. In  non-rotating spherical 
co-ordinates, r,  8, q5 (with velocity components, u, 21, w, respectively) the viscous 
no-slip boundary condition produces a circumferential or zonal component of 
velocity, w, referred to here as the primary flow. The resulting centrifugal forces 
induce a secondary flow in planes containing the axis of rotation. It consists of 
a radial outflow, u > 0, near the equator, and by continuity, there must be a 
radial inflow, u < 0, near the poles, together with a meridional flow, v, parallel 
to lines of longitude at intermediate latitudes. In  engineering terms, the sphere 
acts like a centrifugal fan; meteorologically, there is a centrifugally driven 
Hadley type circulation. 

Modern research on the steady-state problem by Howarth (1951), Nigam 
(1954), Kobashi (1957), Stewartson (1958), and Kreith, Roberts, Sullivan & 
Sinha (1963) contains considerable disagreement among authors, much of which 
can be traced to the method of approximation used. Howarth (1951) introduced 
the boundary-layer equations for a rotating sphere and showed that, in the 
neighbourhood of the poles (8 = 0, T), they reduce to the well-known von Kkmbn 
equations for an infinite rotating disk. Presumably, therefore, the solution to the 
sphere problem must approach that of the disk as 8 -+ 0 or T, but as elaborated 
below, this conclusion is not fully justified because the two problems have 
different boundary conditions at infinity. Nevertheless, Howarth used the 
rotating disk analogy to make an appropriate choice of functional dependence 
for v, w and obtained an approximate solution to the boundary-layer momentum 
integral equations by the K&rm&n-Pohlhausen method. Subsequent theoretical 
analyses have also relied on the boundary-layer equations and the K&rm&n- 
Pohlhausen method. In  spite of the generally great usefulness of these approxi- 
mations, there are several important disadvantages: the Navier-Stokes equations 
are changed in mathematical type, only polynomial approximations are made 
within a finite boundary layer, the order of the system is reduced by 1, and the 
full continuity equation is not satisfied. 

More specifically, the Navier-Stokes equations are elliptic in the co-ordinates 
whereas the boundary-layer equations are parabolic. Fully aware of this, 
Howarth indicated that the latter equations cannot adequately describe the 
interesting interaction near the equator where the secondary flow is expected to 
consist of two colliding boundary layers. Thus, Howarth’s solution gives radial 
inflow to the boundary layer everywhere, no outflow being predicted near the 
equator. In  1954, Nigam disagreed with Howarth’s assessment of the parabolic 
failure of the boundary-layer equations, but his argument was subsequently 
disputed by Stewartson (1958) and recently by Kreith et al. (1963). Nigam 
introduced the following expansion for the velocity components (where u = v,, 
v = v , , w = v .  $1 

u = $(vn)* (3  cos2e - 1) [Fl + sin28F3+ sin48F5 + ...I, 

w = an sin 8[Hl + sin2 OH, + sin48H5 + . ..I. 
v = a n  cos 8 sin OIGl + sin2 8G3 + sin4 8G5 + . . .I, 1 (1) 

Here a and s2 are the sphere’s radius and angular velocity, respectively, and the 
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F ,  G ,  H functions give the radial dependence. These &st nine functions were 
determined from the boundary-layer equations by the Kkmh-Pohlhausen 
method. The present analysis shows that, at least to first order, Nigam’s trigo- 
nometric dependence is logical. Furthermore, equations (1) provide for both 
inflow and outflow from the boundary layer, as demanded by continuity. The 
critical co-latitude, e,, where u = 0, is given by 3 cos28, = 1, or 8, = 54.7’. This 
angle was also determined experimentally by Kobashi (1957) who found 
OC = 54.5’. Such close agreement must, of course, be regarded as partly fortuitous 
since, as noted by Kreith et al. (1963), Kobashi deduced the very small radial 
velocity component indirectly from hot-wire measurements of the total velocity 
vector. 

A second shortcoming of the previous studies rests in the K&rmBn-Pohlhausen 
method. The point at  infinity where the velocity vanishes is moved in to  a finite 
distance from the boundary and then the relevant functions are represented by 
polynomials in the finite boundary layer. There is no a priori reason to suppose 
that all velocity components vanish at the same distance from the sphere. More- 
over, the finite depth approximation coupled with Nigam’s expansion, equations 
(l), leads to a practically constant boundary-layer thickness over the entire 
sphere. Accordingly, Nigam’s solution has been doubted by Kobashi (1957) and 
Kreith et al. (1963) both of whom measured values of 6 which varied with 8. 
However, any measurements of 6 must be viewed with caution since the radial 
distance at  which the circumferential velocity decreases to 1 or 2 yo of the surface 
speed is not very precisely located and is highly sensitive to experimental error. 
In  fact, Kobashi’s and Kreith’s measurements only agree within about 25 % on 
this point. 

The last objections to the boundary-layer approximation for this problem are 
the most serious since they lead to results which are not even qualitatively correct 
far out in the boundary layer. Within that approximation, the radial pressure 
gradient is small so the radial equation of motion is neglected. This lowers the 
order of the system by 1 so one boundary condition cannot be satisfied. In  
Howarth’s and Nigam’s treatments, the radial velocity tends to a finite non-zero 
limit at r = a + 6. As a by-product, because of the boundary-layer approximation 
for the continuity equation, their meridional velocity fields, 11, are directed toward 
the equator everywhere, which violates continuity. There must be a poleward 
flow sufficiently far out to feed the secondary circulation; indeed, one of the 
questions of interest is the distance from the sphere at which v changes sign. 
A non-zero radial flow at r = a + S may appear justified near the axis of rotation 
in view of Howarth’s proof that the boundary-layer equations in that region 
reduce to those of the von KClrmbn rotating disk. However, for the disk problem 
a non-zero flow towards the boundary is required far away only because the disk, 
being of infinite radius, forces a radial outflow at infinity. The sphere has finite 
radius, a, so near the poles the solution can only approach that corresponding to 
a finite disk. In  this paper we impose the physically realistic boundary conditions 
that all velocity components vanish as r -+ co. 
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2. Formulation 
Consider a sphere of radius a immersed in an infinite expanse of homogeneous 

viscous fluid initially at rest. At time t = 0,  an impulsive angular acceleration is 
applied to the sphere so that its angular velocity instantaneously increases to a 
constant value Q, so chosen that the Reynolds or Taylor number, a2Q/v, is much 
larger than 1. The continuity and Navier-Stokes equations, in non-rotating 
spherical co-ordinates r ,  0, $, with a/a# = 0 because of axial symmetry, are 

r-2(r2u), + (r sin O)-l (v sin O), = 0, ( 2 )  

U, + WU,? + r-be v - r-l(v2 + w2) 

= p-lp, + v[r-2(r2u,), + (r2 sin @)-I (ue sins), - ~ T - ~ ( U  + ~0 + v cot S)], (3) 

vt + uv, + r-lvvg + r-luv - r-lw2 cot 8 
= (pr)-'pe + v[r-2(r2vr), + (r2 sin O)-l (vg sin S), + 2r-%e - ( r  sin O)-zv], (4) 

wt + uw, + r-'Vwe + r-luw + r-lvw cot S 
= v[r-2(r2w,), + (r2 sin O)-l (we sin O), - (r sin 0)-2 w], 

The initial condition, no-slip boundary condition and vanishing of the velocity 
at infinity (as discussed in the introduction) take the form 

i at t = O : u = v = w = O ,  

a t  r = a: u = v = 0,  w = aQsinO, 
as r +a: u ,v ,w  --f 0. I 

The method of simplification used here is standard for impulsively started 
flows (e.g. Schlichting 1960). It has been used by Carrier & DiPrima (1956) who 
studied the small rotational oscillations of a sphere. In  fact, they also suggested 
using it for the present initial value problem. Our notation is similar to theirs, 
although the solutions, of course, are different. In  the early stages of motion, 
i.e. when Otis suitablyrestricted, the non-steady accelerations in equations (3)-(5) 
are large and since the boundary layer is initially thin (i.e. S is small compared 
with a) ,  the viscous forces will be large, but the convective acceleration will be 
relatively small. Stated another way, we assume, for sufficiently small Qt, that 
the secondary flow is small relative to the primary flow: u, v small compared to w. 
This argument is made more quantitative by noting that since w decays from 
aQ sin S at r = a toward 0 a t  r = a + 6, then w is of order aQ within the boundary 
layer. Consequently, the centripetal accelerations which induce the secondary 
flow are of order an2, so that for small t ,  u and v are of order aQ2t. The ratio of 
u or v to w is then of order e = Qt. One could now proceed formally to expand 
u, v, w in powers of E and show that first approximations are determined by 
equations with all non-linear terms except r-lw2 neglected. This was done by 
Carrier & DiPrima (1956) and is not repeated here. In  any case, the linearization 
hypothesis is checked post facto and an upper limit on Qt is found. 

If the influence of the secondary flow on the primary flow is first neglected, 
then equation ( 5 )  becomes 

w, = v[r-2(r2wT), + (r2 sin O)-l (we sin O), - ( r  sin 0)-2 w]. (7) 
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Once w is found from this linear equation, it is used as a forcing function to drive 
a secondary flow. A stream function is introduced to satisfy equation ( 2 )  

u E - (r sin 0)-1 ($sin O)o, v = ~-~(rq$)? .  (8) 

Equations (3) and (4) are now partially linearized by neglecting terms quadratic 
in u, v compared to the linear terms in u, v. However, the important non-linear 
centripetal acceleration involving w2/r is retained in full. Equations (3) and (4) 
are then combined to eliminate the pressure in the usual way by considering the 
g5 component of the vorticity which, in view of equation (8) leads to the following 
single equation for $(r, 0, t )  

9($J + VLP($) = r 2 ( w 2 ) @  - r-l cot 0(w2),, 

9 ( h )  E - +{(rh)w+ +[(sin 0)-l (hsin 0),lS}. 

(9) 

where 2 is the linear differential operator 

(10) 

3. The primary flow w 

Appropriate non-dimensional variables used throughout are 

(i) Solution by Laplace transform 

x = r /a ,  7 = vt/a2 = Qt/R, R = a2Q/v. (11)  

Since the boundary-layer thickness is expected to be of order (vt)*, the non- 
dimensional time 7 is essentially the ratio of S2 to a2. It is also the ratio of the 
sphere’s angular rotation QZt to the Reynolds or Taylor number, R = a2R/v. 
Introduction of the non-dimensional primary flow 

(12) 

(13) 

f ( X , O )  = 0, f(1,7) = 1,  f(C0,7) = 0. (14) 

W ( T ,  0, t )  = aQ sin 0 f ( x ,  7), 

f T  - f,, - 2 x 9 ,  + 2x-2f = 0,  

eliminates the trigonometric dependence from equation (7), leaving 

with boundary and initial conditions 

The boundary-layer approximation to equation (13), in which the curvature of 
the boundary is neglected, would consist of just the first two terms, but it is not 
necessary to introduce that simplification at this point because the exact solution 
of this linear parabolic boundary-value problem can be found by introducing 
the Laplace transform with respect to 7 

The appropriate solution of the resulting ordinary differential equation which 
satisfies equations (14) is 
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The inversion is conventional (cf. ErdAlyi 1954), with the result that 

where erfc a EE 2n-* /: e-v' dy. 

This solution is plotted in figure 1, for several values of 7.  It shows that for 
sufficiently small 7, i.e. for values of 7 up to about 10-3, the viscous effects are 
confined to a narrow region adjacent to the surface. Thus, the solution for w is 
of boundary-layer type, for 7 up to about despite the linearization of the 
Navier-Stokes equation for w. This is because, as discussed by Carrier (1953), 
boundary-layer behaviour is dependent on the smallness of the coefficient of the 
most highly differentiated terms rather than on non-linearity in the differential 
equation. 

I I I I I I 1 I 1 1 

0.6 
7 = 10-2 

0.4 I\ \ \ \ 

= 

0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 
I 

0.18 
3 0.20 0.22 0.24 

2 - 1  

FIGURE 1. The primary (zonal) flow field aa a function of radial 
distance for various times. 

(ii) Boundary-layer thickness 

w/aQ sine = 0.02, 

If 6 is defined as the distance from the surface of the sphere at  which 

then for 0 < 7 < 10-2, (18) 

Since the linearization approximation is only valid if &/a is small, we again see 
that interest must be restricted to values of 7 up to about at which time 

A more precise definition of the depth of the boundary layer is the boundary- 

6 + 3-3a7* = 3*3(vt)&. 

6/a + 0.10. 

layer displacement thickness, defined here as 

6, = (an sin @)-I f(z, 7) dz = u( 1 - e7 erfc d), (19) 

where use has been made of the solution in equation (1 7). The leading term in an 
expansion of a1(7) in powers of T* is 

&(T) 2 2 d a d  = 1*13(vt)*. (20)  
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(iii) Viscous torque 

The viscous torque which must be overcome to maintain the rotation is the 
product of shear stress and moment arm, integrated over the area of the sphere 

= - 8npa3~[1+ ~(n7)-4 - 4 er erfc 741, (21) 

the minus sign indicating that the torque opposes the motion. Clearly, during 
the transient where the present analysis is valid, the second term dominates, so 

T G - $ nr)pa3 Q7-4 = - # m i  (pp)!~ a4 Qa t-4 

G - ?pa3 Q(a/Sl), (22) 

the last statement following from equation (20). Equation (22) shows that the 
basic variation with angular velocity is non-linear, the functional dependence 
being the same as that for a rotating disk (Schlichting 1960). Also, the torque 
varies inversely with boundary-layer displacement thickness. 

(iv) Primary sow as a similar solution 

The complicated function in equation (1 7)  is greatly simplified conceptually by 
observing that it is very nearly similar in time. That is, the primary flow velocity 
profile does not change shape very much in time, only scale, so the several curves 
in figure 1 can be made nearly congruent. The most obvious scale factor is the 
boundary-layer thickness, but because it cannot be defined precisely, we choose 
instead the displacement thickness, a,, and define the similarity variable by 

. x-1 
n4S1(7) d ( 1 -  er erfc 74) 274 ' (23) 

the last expression following from equation (20). At the outer edge of the boundary 
layer as defined by equation (18)) 7 has the value 1.65. In terms of q,f(x,7),  is 
very closely approximated by 

-- r -a  x - 1  - - 7 = - -  

P(7) = erfc 7 A f(x, 7 ) .  (24) 

The absolute error, P(7) -f(x, 7), never exceeds 0,0042 for values of 7 up to 
(the upper limit for validity of the present analysis). However, the percentage 
error does become large far out in the boundary layer. It is worth pointing out 
that the approximate similar solution in equation (24) is identical to that for an 
impulsively started flat plate (i.e. the Rayleigh problem). It is also essentially 
what would have been obtained from the boundary-layer approximation to 
equation ( 13). 

Once the approximate similarity in time of the primary flow velocity profile 
has been established, it is intriguing to compare its shape with that of the steady- 
state profile, to see how much the two differ. If the two have the same shape, 
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then apparently the neglected non-linear terms have had little effect on similarity. 
If such a conclusion were true, then the essentially non-linear steady-state profile 
could be predicted from the non-steady but linearized analysis used here. Of 
course, the present analysis cannot yield accurate values of the steady-state 
boundary-layer thickness, so the scale factor would remain undetermined. 

Howarth’s steady-state solution is given by the simple cubic 

W 

UQ sin I9 

This same cubic is the leading term in Nigam’s solution (HI in equation (1)). 
Integration of equation (25) with respect to r from a to a + 8 shows that 8, = $8. 
Therefore, in terms of our similarity variable, 7 = (r--a)/&,, Howarth’s 
solution is 

This equation is compared with the non-steady similar solution, equation (24), 
in figure 2. The agreement is rather close, considering the approximations 
inherent in Howarth’s analysis and those made here. This suggests that as time 
proceeds beyond the values for which the present analysis is valid, the decreasing 
importance of the non-steady term and the increasing importance of the non- 
linear terms may partially compensate each other, so that the shape of the 
primary flow velocity profile is relatively unaffected. 

r -a  7 = -  
nlt6, 

FIGURE 2. The primary (zonal) flow field as a similar solution and comparison with 
Howarth’s steady-state boundary-layer solution. 
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4. The secondary flow, u, Y 

The starting point for finding the secondary flow is equation (9) for the stream 
function. This linear, fourth-order, non-homogeneous equation is first non- 
dimensionalized and the trigonometric dependence removed by introducing a 
dimensionless stream function, g(x ,  7 ) ,  

$(r, 8, t )  = (a4Q2/v) sin 28g(x ,  7 ) .  ( 2 7 )  

In view of equation (S), the radial and meridional velocity components become 

u = - 2 ( a 3 ~ 2 / v )  ( 3 c 0 S 2 ~ - - i ) x - 1 9 ,  ( 2 8 )  

v = (a3Q2/v) sin 2B(g, + x-lg).  ( 2 9 )  

Comparison with equation (1) shows that Nigam's trigonometric dependence is 
indeed logical. Substitution of equations (1 l ) ,  ( 1 2 )  and ( 2 7 )  into equation ( 9 )  leads, 
after considerable algebra, to 

g,,,, + 4X-lg,,, - 1 2 ~ - ~ g , ,  + 2 4 ~ - ~ g  - g,,, - 2x-lgr, + 6 ~ - ~ g ,  = x - Y 2  - x-'&',. 
( 3 0 )  

It is remarkable that a sin28 dependence in $ completely eliminates 8 from 
equation (9). The initial and boundary conditions are 

g(x ,  0 )  = g(L7) = 9,(1,7) = g h 7 )  = gx(0077) = 0. ( 3 1 )  

A convenient first integral of equation ( 3 0 )  can be found by first dividing by x ,  
then integrating with respect to x, and finally multiplying by x with the result that 

g,,, + 5 ~ - l g , ,  - 2 ~ - ~ g ,  - 6xP3g - g,, - 3x-lg7 = - $x-Y2. ( 3 2 )  

The boundary conditions as x -+ 00 have been used to evaluate the constant of 
integration as 0. This last equation is still difficult to solve, primarily because the 
forcing function is non-linear and extremely complicated. We could, of course, 
make the boundary-layer approximation by replacing the left-hand side by 
g,,, - g,,, but it would then be impossible to satisfy the boundary conditions at 
infinity (equation (31 ) ) .  Furthermore, somewhat milder approximations can be 
introduced which still make the equation simple enough to solve easily. In  
particular, use of the approximate similarity of the primary flow, f, leads to great 
simplification. Apart from the factor 2-1 (which departs only very slightly from 
the constant value 1 throughout the boundary layer) the forcing function is very 
nearly similar in time. Therefore, we look for a solution of equation ( 3 2 )  which is, 
apart from powers of x ,  also similar in time. We introduce a similar stream 
function, G(y), 

where d, = b',(~)/a is the non-dimensional displacement thickness. Here the 
factor r3 simplifies the resulting equation and guarantees the satisfaction of 
boundary conditions a t  infinity. The factor d: essentially gives the amplitude of 
the stream function; in view of equation ( 2 0 )  it  could also be approximated by 7% 

but we prefer to make the solution appear to be independent of time so that the 

g @ ,  7) = z-3d13 Q(y), ( 3 3 )  
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extent of the similarity can be checked. With this substitution, equation (32) 
becomes 

GI" + (& d; 7 - 47dX-ldl) G" - ( 2 7 4  d; - 4 7 ~ x 4 4 )  G' = - &d~tx2f~, (34) 

where G' = dG/dv, d i  = dd,/d~. The next step is to approximate the coefficients 
and the forcing function by simpler forms. From equation (19), an expansion of 
d1(7) in powers of 7 )  gives 

(35) 
d1(7) = 2n-474 - 7 + O ( d ) ,  

d, d; = 2n-l- 3n-*d + o(7). } 
Consequently, the coefficient of G" in equation (34) is 

27[l -gn474 + 0(7)] - 4x-%4[2 - 7d74 + O(T)]. (36) 

In  the region of interest, 7 ranges from 0 at the boundary to 1.65 at the edge of 
boundary layer, 7 is less than or equal to about 10-3, and x = r /a  is very nearly 1. 
Consequently, the dominant term in equation (36) is 27. Similarly, the coefficient 
of G' in equation (34) becomes 

- 4 [ l - $ n * d + o ( ~ ) ] +  16~-2T[l+O(~*)] -4. (37) 

The final simplification required is to approximate the correct forcing function, 
- 4dx2f2, by - 4&F2 based on equation (24) and the replacement of x by 1. 
Therefore, equation (34), is approximated by the simpler equation 

G I '  + 27G" - 4G' = - &% erfe2 7. (38) 

Essentially this same equation has been solved by Nigam (1951) in connexion 
with the impulsively started von K&rm&n rotating disk. The required solution is 

G(7) = &(774[(37 + 2v3) erfc 7 - 2 7 d (  1 + r2) e-q2] 

- dy(n-*e-wa - 7 erfc 712 - re-q'erfc 7 (39) 
+ 2berfc 247 + 2 - (24 - I )  n). 

Since G' is needed to evaluate v, we list it  also for reference 

G'(7) = &7r*[(3 + 6v2) erfc 7 - 6m-$7 e-qa] 

- an#(n-* e-7% - 7 erfc 71%. (40) 

The radial and meridional velocity components now have the form (from 
equations (as), (as), (33)) 

= - 2(@3~22/~) (3 C O m  - qX-4d; G, 

v = (a3R2/v) sin 28(n-*r3d? G' - 2x-4d: G). 

(41) 

(42) 

5. Results and discussion 
Figure 3 shows G and c' plotted as functions of 7. It should be noted that even 

though C has a non-zero asymptotic value for large 7, the velocity components 
u, v tend to zero as x -+ co, as required. In  figures 4 and 5 the radial dependence 
of u and v are displayed for three values of 7 ,  and it is seen that the shapes of these 
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FIGURE 3. The non-dimensional stream function and its derivative as functions 

of the similarity variable. 
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FIGURE 4. The radial dependence of the radial velocity component 
for three values of time. 
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velocity profiles are qualitatively correct in the sense that u has a maximum and 
then decays far out and v changes sign, as demanded by continuity. These last 
two features are not present in the solutions of previously cited authors. On the 
other hand, i t  must be admitted that the present solutions cannot be expected 
to be quantitatively accurate very far out in the boundary layer because of the 
approximations made. Still it  is interesting that close to the boundary, where 
these solutions are most accurate, the shapes of the u and v curves do not change 
very much with time, only the scale and amplitude. Further out they do, and 
the ultimate decay to zero predicted here for both u and v is like Y - ~ .  The place 
where u reaches its maximum and v changes sign are fairly close to the outer edge 
of the primary flow boundary layer. Therefore, we conclude that the secondary 
flow in general has larger scale, though smaller amplitude, than the primary zonal 
flow. This feature is also indicated by the steady-state data of Kobashi (1957). 

0.05 I l l 1 1  1 1 1 1 1 1 1 1 1 1 1 1 1 1  

- 0.01 l l  I l l l l l l l l l l l t l l l l  

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 
?.--a q = -  
rhY1 

FIGURE 5. The radial dependence of the meridional velocity component 
for three values of time. 

The consistency of the linearization approximation can be checked post facto 
by examining the ratios U I W ,  v/w which are to be small. Apart from the region 
far out in the boundary layer, where the present solutions are unreliable anyway, 
u 6 v, so it is sufficient to look at  vlw. In the present notation, 

V a2fi 
- = 2 - cos 8(7r-*~-~d21 G' - 2 ~ - ~ d !  G) (f )-l. 
W V 

(43) 

A numerical computation of this function shows that for given Taylor number, 
a2fi /u ,  co-latitude, 8, and radial distance, x, v/w, increases montonically with 7; 

so we examine the case of r = 10-3 which is about the largest value for which the 
present theory is valid. Restricting interest to the region 0 < 7 < 1-65, we find 
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that v/w will be small compared to 1 so long as Qt is small compared to about 
4.5 sec 8; for example, at 19 = 60°, at must be small compared to about 9 radians. 

In  general, the actual values of u, v, w computed from the present results are 
felt to be reasonable estimates during no more than the first radian of the sphere's 
travel, for values of 7 up to and values of 7 out to 1.65. Of potentially greater 
use than the actual numerical values, is the discovery of similarity in the problem. 

During the course of this investigation the author benefited from discussions 
with M. B. Glauert, B. R. Morton, and E. Watson from Manchester University, 
G.W.Platzman from the University of Chicago, and P.D.Thompson of the 
National Center for Atmospheric Research. Numerical evaluations were pro- 
grammed by Mr Loren Wagner of NCAR. The work was supported in part by the 
Office of Naval Research under contract Nonr 3 164( 00). 
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